Pengertian Data Warehouse dan Data Mining Menurut Para Ahli
Pengertian Data Warehouse dan Data Mining Menurut Para Ahli - Sebelum kita membahas tentang data warehouse, hal yang harus dipahami terlebih dahulu yaitu pengertian tentang data,informasi dan database.
Menurut Steven Alter, data merupakan fakta,gambar atau suara yang mungkin atau tidak berhubungan atau berguna bagi tugas tertentu.
Menurut McLeod, data terdiri dari fakta-fakta dan angka yang secara relatif tidak berarti bagi pemakai. Sedangkan informasi adalah data yang sudah diproses atau data yang memiliki arti.
Di sini kita dapat melihat bahwa data merupakan suatu bentuk keterangan-keterangan yang belum diolah atau dimanipulasi sehingga belum begitu berarti bagi sebagian pemakai. Sedangkan informasi merupakan data yang sudah di olah sehingga memiliki arti.
Menurut James A. O’Brien Database adalah suatu koleksi terintegrasi dimana secara logika berhubungan dengan record dari file.
Menurut Fatansyah, Database adalah kumpulan data yang saling berhubungan yang disimpan secara bersama sedemikian rupa dan tanpa pengulangan(redudansi) yang tidak perlu, untuk memenuhi berbagai kebutuhan.
Jadi Pengertian Database adalah tempat penyimpanan data yang saling berhubungan secara logika, sehingga bisa digunakan untuk mendapatkan suatu informasi yang diperlukan oleh suatu organisasi atau perusahaan.
Sedangkan data yang diperoleh suatu organisasi atau perusahaan umumnya didapat dari kegiatan operasional sehari-hari atau hasil dari transaksi.
Dari perkembangan model database, muncullah apa yang disebut dengan data warehouse.
DATA WAREHOUSE
Pengertian Data Warehouse dapat bermacam-macam namun mempunyai inti yang sama, seperti pendapat beberapa ahli berikut ini :
Menurut W.H. Inmon dan Richard D.H., data warehouse adalah koleksi data yang mempunyai sifat berorientasi subjek,terintegrasi,time-variant, dan bersifat tetap dari koleksi data dalam mendukung proses pengambilan keputusan management.
Menurut Vidette Poe, data warehouse merupakan database yang bersifat analisis dan read only yang digunakan sebagai fondasi dari sistem penunjang keputusan.
Menurut Paul Lane, data warehouse merupakan database relasional yang didesain lebih kepada query dan analisa dari pada proses transaksi, biasanya mengandung history data dari proses transaksi dan bisa juga data dari sumber lainnya. Data warehouse memisahkan beban kerja analisis dari beban kerja transaksi dan memungkinkan organisasi menggabung/konsolidasi data dari berbagai macam sumber.
Jadi, data warehouse merupakan metode dalam perancangan database, yang menunjang DSS(Decission Support System) dan EIS (Executive Information System). Secara fisik data warehouse adalah database, tapi perancangan data warehouse dan database sangat berbeda. Dalam perancangan database tradisional menggunakan normalisasi, sedangkan pada data warehouse normalisasi bukanlah cara yang terbaik.
Dari definisi-definisi yang dijelaskan tadi, dapat disimpulkan data warehouse adalah database yang saling bereaksi yang dapat digunakan untuk query dan analisisis, bersifat orientasi subjek, terintegrasi, time-variant,tidak berubah yang digunakan untuk membantu para pengambil keputusan.
Istilah-istilah yang berhubungan dengan data warehouse
Data Mart
a. Pembuatan laporan
Pembuatan laporan merupakan salah satu kegunaan data warehouse yang paling umum dilakukan. Dengan menggunakan query sederhana didapatkan laporan perhari,perbulan, pertahun atau jangka waktu kapanpun yang diinginkan.
b. On-Line Analytical Processing (OLAP)
Dengan adanya data warehouse,semua informasi baik detail maupun hasil summary yang dibutuhkan dalam proses analisa mudah didapat.
OLAP mendayagunakan konsep data multi dimensi dan memungkinkan para pemakai menganalisa data sampai mendetail, tanpa mengetikkan satupun perintah SQL. Hal ini dimungkinkan karena pada konsep multi dimensi, maka data yang berupa fakta yang sama bisa dilihat dengan menggunakan fungsi yang berbeda. Fasilitas lain yang ada pada sofware OLAP adalah fasilitas rool-up dan drill-down. Drill-down adalah kemampuan untuk melihat detail dari suatu informasi dan roll-up adalah kebalikannya.
c. Data mining
Data mining merupakan proses untuk menggali(mining) pengetahuan dan informasi baru dari data yang berjumlah banyak pada data warehouse, dengan menggunakan kecerdasan buatan (Artificial Intelegence), statistik dan matematika. Data mining merupakan teknologi yang diharapkan dapat menjembatani komunikasi antara data dan pemakainya.
Beberapa solusi yang diberikan data mining antara lain :
1. Menebak target pasar
Data mining dapat mengelompokkan (clustering) model-model pembeli dan melakukan klasifikasi terhadap setiap pembeli dan melakukan klasifikasi terhadap setiap pemebeli sesuai dengan karakteristik yang diinginkan.
2. Melihat pola beli dari waktu ke waktu
Data mining dapat digunakan untuk melihat pola beli dari waktu ke waktu.
3. cross-market analysis
Data mining dapat dimanfaatkan untuk melihat hubungan antara satu produk dengan produk lainnya.
4. Profil pelanggan
Data mining bisa membantu pengguna untuk melihat profil pembeli sehingga dapat diketahui kelompok pembeli tertentu cenderung kepada suatu produk apa saja.
5. Informasi summary
Data mining dapat membuat laporan summary yang bersifat multi dimensi dan dilengkapi dengan informasi statistik lainnya.
d. Proses informasi executive
Data warehouse dapat membuat ringkasan informasi yang penting dengan tujuan membuat keputusan bisnis, tanpa harus menjelajahi keseluruhan data. Dengan menggunakan data warehouse segala laporan telah diringkas dan dapat pula mengetahui segala rinciannya secara lengkap, sehingga mempermudah proses pengambilankeputusan. Informasidan data padalaporan data warehouse menjadi target informative bagi user.
Sekian artikel Modul Makalah tentang Pengertian Data Warehouse dan Data Mining Menurut Para Ahli. Semoga bermanfaat.
Daftar Pustaka
Menurut Steven Alter, data merupakan fakta,gambar atau suara yang mungkin atau tidak berhubungan atau berguna bagi tugas tertentu.
Menurut McLeod, data terdiri dari fakta-fakta dan angka yang secara relatif tidak berarti bagi pemakai. Sedangkan informasi adalah data yang sudah diproses atau data yang memiliki arti.
Di sini kita dapat melihat bahwa data merupakan suatu bentuk keterangan-keterangan yang belum diolah atau dimanipulasi sehingga belum begitu berarti bagi sebagian pemakai. Sedangkan informasi merupakan data yang sudah di olah sehingga memiliki arti.
Menurut James A. O’Brien Database adalah suatu koleksi terintegrasi dimana secara logika berhubungan dengan record dari file.
Menurut Fatansyah, Database adalah kumpulan data yang saling berhubungan yang disimpan secara bersama sedemikian rupa dan tanpa pengulangan(redudansi) yang tidak perlu, untuk memenuhi berbagai kebutuhan.
image source: |
Jadi Pengertian Database adalah tempat penyimpanan data yang saling berhubungan secara logika, sehingga bisa digunakan untuk mendapatkan suatu informasi yang diperlukan oleh suatu organisasi atau perusahaan.
Sedangkan data yang diperoleh suatu organisasi atau perusahaan umumnya didapat dari kegiatan operasional sehari-hari atau hasil dari transaksi.
Dari perkembangan model database, muncullah apa yang disebut dengan data warehouse.
DATA WAREHOUSE
Pengertian Data Warehouse
Pengertian Data Warehouse dapat bermacam-macam namun mempunyai inti yang sama, seperti pendapat beberapa ahli berikut ini :
Menurut W.H. Inmon dan Richard D.H., data warehouse adalah koleksi data yang mempunyai sifat berorientasi subjek,terintegrasi,time-variant, dan bersifat tetap dari koleksi data dalam mendukung proses pengambilan keputusan management.
Menurut Vidette Poe, data warehouse merupakan database yang bersifat analisis dan read only yang digunakan sebagai fondasi dari sistem penunjang keputusan.
Menurut Paul Lane, data warehouse merupakan database relasional yang didesain lebih kepada query dan analisa dari pada proses transaksi, biasanya mengandung history data dari proses transaksi dan bisa juga data dari sumber lainnya. Data warehouse memisahkan beban kerja analisis dari beban kerja transaksi dan memungkinkan organisasi menggabung/konsolidasi data dari berbagai macam sumber.
Jadi, data warehouse merupakan metode dalam perancangan database, yang menunjang DSS(Decission Support System) dan EIS (Executive Information System). Secara fisik data warehouse adalah database, tapi perancangan data warehouse dan database sangat berbeda. Dalam perancangan database tradisional menggunakan normalisasi, sedangkan pada data warehouse normalisasi bukanlah cara yang terbaik.
Dari definisi-definisi yang dijelaskan tadi, dapat disimpulkan data warehouse adalah database yang saling bereaksi yang dapat digunakan untuk query dan analisisis, bersifat orientasi subjek, terintegrasi, time-variant,tidak berubah yang digunakan untuk membantu para pengambil keputusan.
Istilah-istilah yang berhubungan dengan data warehouse
Data Mart
Adalah suatu bagian pada data warehouse yang mendukung pembuatan laporan dan analisa data pada suatu unit, bagian atau operasi pada suatu perusahaan.
On-Line Analytical Processing (OLAP)
Merupakan suatu pemrosesan database yang menggunakan tabel fakta dan dimensi untuk dapat menampilkan berbagai macam bentuk laporan, analisis, query dari data yang berukuran besar.
On-Line Transaction Processing (OLTP)
Merupakan suatu pemrosesan yang menyimpan data mengenai kegiatan operasional transaksi sehari-hari.
Dimension Table
Tabel yang berisikan kategori dengan ringkasan data detail yang dapat dilaporkan. Seperti laporan laba pada tabel fakta dapat dilaporkan sebagai dimensi waktu(yang berupa perbulan, perkwartal dan pertahun).
Fact Table
Merupakan tabel yang umumnya mengandung angka dan data history dimana key (kunci) yang dihasilkan sangat unik, karena key tersebut terdiri dari foreign key(kunci asing) yang merupakan primary key (kunci utama) dari beberapa dimension table yang berhubungan.
DSS
Merupkan sistem yang menyediakan informasi kepada pengguna yang menjelaskan bagaimana sistem ini dapat menganalisa situasi dan mendukung suatu keputusan yang baik.
Ada empat tugas yang bisa dilakukan dengan adanya data warehouse Menurut Williams, keempat tugas tersebut yaitu:On-Line Analytical Processing (OLAP)
Merupakan suatu pemrosesan database yang menggunakan tabel fakta dan dimensi untuk dapat menampilkan berbagai macam bentuk laporan, analisis, query dari data yang berukuran besar.
On-Line Transaction Processing (OLTP)
Merupakan suatu pemrosesan yang menyimpan data mengenai kegiatan operasional transaksi sehari-hari.
Dimension Table
Tabel yang berisikan kategori dengan ringkasan data detail yang dapat dilaporkan. Seperti laporan laba pada tabel fakta dapat dilaporkan sebagai dimensi waktu(yang berupa perbulan, perkwartal dan pertahun).
Fact Table
Merupakan tabel yang umumnya mengandung angka dan data history dimana key (kunci) yang dihasilkan sangat unik, karena key tersebut terdiri dari foreign key(kunci asing) yang merupakan primary key (kunci utama) dari beberapa dimension table yang berhubungan.
DSS
Merupkan sistem yang menyediakan informasi kepada pengguna yang menjelaskan bagaimana sistem ini dapat menganalisa situasi dan mendukung suatu keputusan yang baik.
a. Pembuatan laporan
Pembuatan laporan merupakan salah satu kegunaan data warehouse yang paling umum dilakukan. Dengan menggunakan query sederhana didapatkan laporan perhari,perbulan, pertahun atau jangka waktu kapanpun yang diinginkan.
b. On-Line Analytical Processing (OLAP)
Dengan adanya data warehouse,semua informasi baik detail maupun hasil summary yang dibutuhkan dalam proses analisa mudah didapat.
OLAP mendayagunakan konsep data multi dimensi dan memungkinkan para pemakai menganalisa data sampai mendetail, tanpa mengetikkan satupun perintah SQL. Hal ini dimungkinkan karena pada konsep multi dimensi, maka data yang berupa fakta yang sama bisa dilihat dengan menggunakan fungsi yang berbeda. Fasilitas lain yang ada pada sofware OLAP adalah fasilitas rool-up dan drill-down. Drill-down adalah kemampuan untuk melihat detail dari suatu informasi dan roll-up adalah kebalikannya.
c. Data mining
Data mining merupakan proses untuk menggali(mining) pengetahuan dan informasi baru dari data yang berjumlah banyak pada data warehouse, dengan menggunakan kecerdasan buatan (Artificial Intelegence), statistik dan matematika. Data mining merupakan teknologi yang diharapkan dapat menjembatani komunikasi antara data dan pemakainya.
Beberapa solusi yang diberikan data mining antara lain :
1. Menebak target pasar
Data mining dapat mengelompokkan (clustering) model-model pembeli dan melakukan klasifikasi terhadap setiap pembeli dan melakukan klasifikasi terhadap setiap pemebeli sesuai dengan karakteristik yang diinginkan.
2. Melihat pola beli dari waktu ke waktu
Data mining dapat digunakan untuk melihat pola beli dari waktu ke waktu.
3. cross-market analysis
Data mining dapat dimanfaatkan untuk melihat hubungan antara satu produk dengan produk lainnya.
4. Profil pelanggan
Data mining bisa membantu pengguna untuk melihat profil pembeli sehingga dapat diketahui kelompok pembeli tertentu cenderung kepada suatu produk apa saja.
5. Informasi summary
Data mining dapat membuat laporan summary yang bersifat multi dimensi dan dilengkapi dengan informasi statistik lainnya.
d. Proses informasi executive
Data warehouse dapat membuat ringkasan informasi yang penting dengan tujuan membuat keputusan bisnis, tanpa harus menjelajahi keseluruhan data. Dengan menggunakan data warehouse segala laporan telah diringkas dan dapat pula mengetahui segala rinciannya secara lengkap, sehingga mempermudah proses pengambilankeputusan. Informasidan data padalaporan data warehouse menjadi target informative bagi user.
Sekian artikel Modul Makalah tentang Pengertian Data Warehouse dan Data Mining Menurut Para Ahli. Semoga bermanfaat.
Daftar Pustaka
- Connoly, T., & Begg, c. (2005). database system; a practical approach to design, implementation and management (4th ed.). Harlow :Addison wesley
- Indrajani. (2011). Perancangan Basis Data Dalam All In 1, ISBN 978-979-27-9980-4, Jakarta: Elex Media Computindo
- Indrajani. (2011). Bedah Kilat 1 Jam – Pengantar dan Sistem Basis Data, ISBN 978-979-27-9695-7, Jakarta: Elex Media Computindo
- Inmon, W.H. (2005). Building The Data Warehouse. Third edition. John Wiley & Sons. New York
- O'Brien, J. (2003). Introduction To Information Systems (11th ed.). New York: Mc Graw Hill
Posting Komentar untuk "Pengertian Data Warehouse dan Data Mining Menurut Para Ahli"
Tata tertib berkomentar
1. Komentar harus relevan dengan konten yang dibaca
2. Gunakan bahasa yang sopan
3. Tidak mengandung unsur SARA or Bullying.
4. Dilarang SPAM.
5. Dilarang menyisipkan link aktif pada isi komentar.
Berlakulah dengan bijak dalam menggunakan sarana publik ini. Baca dan pahami isinya terlebih dahulu, barulah Berkomentar. Terimakasih.